Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 14(1): 9133, 2024 04 21.
Article En | MEDLINE | ID: mdl-38644370

Multimedia is extensively used for educational purposes. However, certain types of multimedia lack proper design, which could impose a cognitive load on the user. Therefore, it is essential to predict cognitive load and understand how it impairs brain functioning. Participants watched a version of educational multimedia that applied Mayer's principles, followed by a version that did not. Meanwhile, their electroencephalography (EEG) was recorded. Subsequently, they participated in a post-test and completed a self-reported cognitive load questionnaire. The audio envelope and word frequency were extracted from the multimedia, and the temporal response functions (TRFs) were obtained using a linear encoding model. We observed that the behavioral data are different between the two groups and the TRFs of the two multimedia versions were different. We saw changes in the amplitude and latencies of both early and late components. In addition, correlations were found between behavioral data and the amplitude and latencies of TRF components. Cognitive load decreased participants' attention to the multimedia, and semantic processing of words also occurred with a delay and smaller amplitude. Hence, encoding models provide insights into the temporal and spatial mapping of the cognitive load activity, which could help us detect and reduce cognitive load in potential environments such as educational multimedia or simulators for different purposes.


Brain , Cognition , Electroencephalography , Multimedia , Humans , Cognition/physiology , Male , Female , Brain/physiology , Young Adult , Adult , Acoustic Stimulation , Linguistics , Attention/physiology
2.
Front Neurosci ; 16: 744737, 2022.
Article En | MEDLINE | ID: mdl-35979334

The use of multimedia learning is increasing in modern education. On the other hand, it is crucial to design multimedia contents that impose an optimal amount of cognitive load, which leads to efficient learning. Objective assessment of instantaneous cognitive load plays a critical role in educational design quality evaluation. Electroencephalography (EEG) has been considered a potential candidate for cognitive load assessment among neurophysiological methods. In this study, we experiment to collect EEG signals during a multimedia learning task and then build a model for instantaneous cognitive load measurement. In the experiment, we designed four educational multimedia in two categories to impose different levels of cognitive load by intentionally applying/violating Mayer's multimedia design principles. Thirty university students with homogenous English language proficiency participated in our experiment. We divided them randomly into two groups, and each watched a version of the multimedia followed by a recall test task and filling out a NASA-TLX questionnaire. EEG signals are collected during these tasks. To construct the load assessment model, at first, power spectral density (PSD) based features are extracted from EEG signals. Using the minimum redundancy - maximum relevance (MRMR) feature selection approach, the best features are selected. In this way, the selected features consist of only about 12% of the total number of features. In the next step, we propose a scoring model using a support vector machine (SVM) for instantaneous cognitive load assessment in 3s segments of multimedia. Our experiments indicate that the selected feature set can classify the instantaneous cognitive load with an accuracy of 84.5 ± 2.1%. The findings of this study indicate that EEG signals can be used as an appropriate tool for measuring the cognitive load introduced by educational videos. This can be help instructional designers to develop more effective content.

...